Fractal Pattern Formation at Elastic-Plastic Transition in Heterogeneous Materials

نویسنده

  • J. Li
چکیده

Fractal patterns are observed in computational mechanics of elastic-plastic transitions in two models of linear elastic/perfectly plastic random heterogeneous materials: (1) a composite made of locally isotropic grains with weak random fluctuations in elastic moduli and/or yield limits and (2) a polycrystal made of randomly oriented anisotropic grains. In each case, the spatial assignment of material randomness is a nonfractal strict-white-noise field on a 256 256 square lattice of homogeneous square-shaped grains; the flow rule in each grain follows associated plasticity. These lattices are subjected to simple shear loading increasing through either one of three macroscopically uniform boundary conditions (kinematic, mixed-orthogonal, or static) admitted by the Hill–Mandel condition. Upon following the evolution of a set of grains that become plastic, we find that it has a fractal dimension increasing from 0 toward 2 as the material transitions from elastic to perfectly plastic. While the grains possess sharp elastic-plastic stress-strain curves, the overall stress-strain responses are smooth and asymptote toward perfectly plastic flows; these responses and the fractal dimension-strain curves are almost identical for three different loadings. The randomness in elastic moduli in the model with isotropic grains alone is sufficient to generate fractal patterns at the transition but has a weaker effect than the randomness in yield limits. As the random fluctuations vanish (i.e., the composite becomes a homogeneous body), a sharp elastic-plastic transition is recovered. DOI: 10.1115/1.3176995

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis of the Effect of External Circumferential Cracks in Transition Thickness Zone of Pressurized Pipes Using XFEM – Elastic-Plastic Behavior

The elastic-plastic behavior of the material is considered to analyze the effect of an external circumferential crack on a pipe with thickness transition and double slopes. Using the extended finite element method (XFEM), the J-integral of 3D cracks were investigated and compared between straight pipes and pipes with thickness transition and different slopes. Considering internal press...

متن کامل

The importance of stress percolation patterns in rocks and other polycrystalline materials

A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those ...

متن کامل

Elastic-Plastic Transition of Pressurized Functionally Graded Orthotropic Cylinder using Seth’s Transition Theory

In this paper the radial deformation and the corresponding stresses in a functionally graded orthotropic hollow cylinder with the variation in thickness and density according to power law and rotating about its axis under pressure is investigated by using Seth's transition theory. The material of the cylinder is assumed to be non-homogeneous and orthotropic. This theory helps to achieve better ...

متن کامل

Determination of the elastic/plastic transition of human enamel by nanoindentation.

OBJECTIVES/METHODS From a materials scientist's perspective, dental materials used for tooth repair should exhibit compatible mechanical properties. Fulfillment of this criterion is complicated by the fact that teeth have a hierarchical structure with changing mechanical behavior at different length scales. In this study, nanoindentation with an 8 microm spherical indenter was used to determine...

متن کامل

Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves

wileyonlinelibrary.com determined by the deformation mechanisms of the ligaments, which buckle under compression at relatively low values of strain. In elasto-plastic porous materials buckling of the beam-like ligaments results in collapse bands that progress at relatively constant stress, providing an efficient energy absorbing mechanism. [ 8–12 ] However, this deformation process cannot be ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009